

ENDBEWERTUNG

IBO ÖKOPASS

PÖTZLEINSDORFER HÖHE 2A

1180 WIEN

Bauträger:

EBG - Gemeinnützige Ein- und Mehrfamilienhäuser Baugenossenschaft reg. Gen.m.b.H. Josefstädter Straße 81-83 1080 Wien

Architektur:

Architekt Krischanitz ZT GmbH Getreidemarkt 1 1060 Wien

Wien, 30.11.2021

KRITERIEN FÜR DEN IBO ÖKOPASS

Bewertungsschema

Die Bewertung erfolgt in 4 Stufen. Die einzelnen Kriterien werden in Teilkategorien beurteilt. Die Grundlagen der Beurteilung, etwa Messergebnisse, sind im umfassenden Endbericht einsehbar. Die Bewertung bezieht sich auf den Zeitpunkt der Messungen. Es wird die gesamte Wohnhausanlage durch stichprobenartige Untersuchungen bewertet. Einzelne Wohnungen können je nach Lage spezifische Eigenheiten aufweisen.

Wertebereich:

Eigenschaft	Bewertung
ausgezeichnete Qualität (ökologisch hervorragend)	ausgezeichnet
sehr gute Qualität (ökologisch sehr günstig)	sehr gut
gehobene Qualität (ökologisch günstig)	gut
erfüllt IBO ÖKOPASS-Mindestkriterien	befriedigend

Kriterien:

Die Anzahl der Kriterien wurde auf 8 komprimiert, die in folgende Bereiche unterteilt sind:

Nutzungsqualität

- Behaglichkeit in Sommer und Winter
- Innenraumluftqualität
- Schallschutz
- Tageslicht und Besonnung
- Elektromagnetische Qualität

Ökologische Qualität

- Ökologische Qualität der Baustoffe und Konstruktionen
- Gesamtenergiekonzept
- Wassernutzung

Diese Kriterien beschreiben das Engagement des Bauträgers, Wohnungen behaglich und ökologisch zu gestalten. Grundstücksabhängige Parameter wie etwa Verkehrsanbindung werden in diesem Pass nicht berücksichtigt.

NUTZUNGSQUALITÄT

Behaglichkeit im Sommer und Winter

Bewertung			
ausgezeichnet	sehr gut	gut	befriedigend

Thermische Qualität der Außenhülle (Außenwand und Fenster)			Bewertungsgewichtung:49%
Passivhausstandard der	Konvektionsheizung	Niedrigenergiehaus-	Standard nach
Gebäudehülle	Anforderungsstufe 3 nach	Standard gem. WBF	Bauordnung
(Außenwand:	VDI 6030 erfüllt	(MA25) erfüllt:	(entspricht den
$U \le 0.15 \text{ W/m}^2 \text{K},$	<u>oder</u>	HWB < 14,67*(1+1,82/lc)	Mindestanforderungen
Fenster:	Außenwand:	(eingereicht bis 5.6.2018)	der OIB-RL 6, Ausgabe
$U_w \le 0.7 \text{ W/m}^2\text{K}$	<u>U < 0,2 W/m²K</u>	bzw. HWB< 14*(1+3/lc)	2015)
<u>oder</u>	<u>und</u>	(eingereicht ab 6.6.2018)	
Behaglichkeit nach	Fenster:	und	
Fanger mit	<u>U_w < 0,9 W/m²K</u>	HWB < 11*(1+2,5/lc) bei	
Strahlungsheizung	<u>oder</u>	Gebäuden mit	
Anforderungsstufe 3 nach	Behaglichkeitsklasse B lt.	Komfortlüftung	
VDI 6030 erfüllt	thermischer Simulation		
<u>oder</u>			
Behaglichkeitsklasse Alt.			
thermischer Simulation			

Überhitzungsneigung /Sommertauglichkeit (vereinfachter Nachweis gem. ÖN B			Bewertungsgewichtung:51%	
8110-3 (2012) oder gem. thermischer Simulation)				
Immissionsflächen-	Immissionsflächen-	Immissionsflächen-	Immissionsflächen-	
bezogene speicher-	bezogene speicher-	bezogene speicher-	bezogene speicher-	
wirksame Masse	wirksame Masse	wirksame Masse	wirksame Masse	
5.000 kg/m² über	2.500–5.000 kg/m ² über	1.000–2.500 kg/m ² über	0–1.000 kg/m² über	
Grenzwert	Grenzwert	Grenzwert	Grenzwert	
<u>oder</u>	2.981 kg/m² Mittelwert	<u>oder</u>	<u>oder</u>	
Temperaturmaximum	aus 2 Räumen	Temperaturmaximum	Temperaturmaximum	
nach thermischer	<u>oder</u>	nach thermischer	nach thermischer	
Simulation < 25°C in	Temperaturmaximum	Simulation < 26,5°C in	Simulation < 27°C in	
kritischen Räumen	nach thermischer	kritischen Räumen	kritischen Räumen	
	Simulation < 26°C in			
	kritischen Räumen			

Thermische Qualität der Außenhülle

Je besser Außenwände gedämmt sind, desto höher sind im Inneren die Oberflächentemperaturen. Dies gilt insbesondere für Glasflächen: Fenster mit einem niedrigen U-Wert sind wärmer. Dadurch wird der Unterschied zwischen Raumlufttemperatur und Oberflächentemperatur der raumumschließenden Flächen geringer – was vom Menschen als behaglich empfunden wird (und gleichzeitig Heizenergie spart). Ein weiterer Effekt ist der Kaltluftabfall an Fenstern und Balkontüren mit zu hohen U-Werten. Die kalte Luft im Bodenbereich kann kalte Füße bedingen.

Überhitzungsneigung / Sommertauglichkeit

Im Sommer können Wohnungen unangenehm heiß werden. Ausreichend schwere Bauteile erwärmen sich tagsüber nur langsam, reduzieren dadurch die Raumtemperatur und geben erst während der kühleren Nacht überschüssige Temperatur wieder ab. Noch wesentlicher als vorhandene Speichermassen sind die Möglichkeit zur Quer- und/oder Diagonallüftung in Wohnungen sowie das Vorhandensein effizienter (außenliegender) Verschattungen. Mithilfe von Simulationen bzw. vereinfachten Berechnungen gemäß ÖN B 8110-3 lässt sich die sommerliche Überhitzungsneigung überprüfen. Je niedriger das zu erwartende Temperaturmaximum ist bzw. je höher die erforderliche speicherwirksame Masse überschritten wird, desto behaglicher wird die Innenraumtemperatur im Sommer empfunden.

Innenraumluftqualität

Bewertung			
ausgezeichnet	sehr gut	gut	befriedigend

Summe der flüchtigen Kohlenwasserstoffe + Aldehyde				
(Siedepunkt bis 250 °C)	Bewertungsgewichtung:40%			
$\leq 300 \mu \text{g/m}^3$	≤ 500 µg/m³	≤ 1.000 µg/m³	$\leq 2.000 \mu g/m^3$	
(4 Wochen nach Freigabe)	(4 Wochen nach Freigabe)	(4 Wochen nach Freigabe)	(4 Wochen nach Freigabe)	
		<u>550 μg/m³</u>		

Formaldehyd [mg/m³] od. [ppm]			Bewertungsgewichtung:30%
≤ 0,03 mg/m³ oder	\leq 0,03 mg/m ³ oder \leq 0,06 mg/m ³ oder \leq 0,10 mg/m ³ oder		
≤ 0,025 ppm	≤ 0,05 ppm	≤ 0,08 ppm	≤ 0,1 ppm
0,018 mg/m ³			

Luftdichtigkeit			Bewertungsgewichtung:30%
n ₅₀ ≤ 0,6 [LW/h] bei	n ₅₀ ≤ 1,0 [LW/h] bei	n ₅₀ ≤ 1,25 [LW/h] bei	n ₅₀ ≤ 2,0 [LW/h] bei
Komfortlüftung (mit	Abluftanlage oder	Abluftanlage oder	Fensterlüftung
WRG)	Komfortlüftung (mit	Komfortlüftung (mit	oder $n_{50} \le 1.5$ [LW/h] bei
	WRG) in den	WRG) in den	Abluftanlage oder
	Hauptaufenthaltsräumen	Hauptaufenthaltsräumen	Komfortlüftung (mit
			WRG) in den
			Hauptaufenthaltsräumen
			<u>n₅₀ = 1,5 [LW/h] bei</u>
			<u>Fensterlüftung</u>

Schimmelpilzbelastung	Bewertungsgewichtung:0%
Keine Schimmelquellen im Innenraum vorhanden	

Flüchtige Kohlenwasserstoffe

Flüchtige Kohlenwasserstoffe oder VOC (Volatile organic compounds) kommen u.a. als Lösungsmittel in Farben, Lacke, Klebstoffe und Ausgleichsmassen vor. Für VOC gibt es Grenzwerte am Arbeitsplatz, die sogenannten MAK-Werte, die gesetzlich vorgeschrieben sind. Für die VOC-Belastung von Wohnungen gibt es keine gesetzlichen Grenzwerte. Die hier festgesetzten Werte orientieren sich an Vorsorgewerten, die weit niedriger angesetzt sind als die MAK-Werte. Der Nachweis für VOC wird durch ein Prüfgutachten / chemische Untersuchung mit Gaschromatographie bzw. Massenspektrometrie nach ÖNORM EN ISO 16000-5 (Probenahmestrategie) und ÖNORM M 5700-2 (Probenahme, Auswertung) erbracht.

Formaldehyd

Formaldehyd ist ein stechend riechendes Gas, das u.a. in Tabakrauch, Spanplatten und Holzwerkstoffen, Klebern, Lacken vorkommt. Gesetzlich begrenzt sind die Ausgasungsraten von Holzwerkstoffen mit 0,1 ppm, andere mögliche Quellen werden nicht berücksichtigt. Der von der Weltgesundheitsorganisation WHO empfohlene Wert liegt bei 0,05 ppm. In diesem Kriterium wird der gesamte Gehalt an Formaldehyd in einer Kontrollwohnung überprüft. Der Nachweis wird durch ein Prüfgutachten nach ÖNORM EN ISO 16000-2 (Probenahmestrategie) und ÖNORM EN 717-1 (Auswertung) erbracht.

Schimmelpilzbelastung

Erhöhte Luftfeuchtigkeit durch Nutzerverhalten, Baumängel oder Restbaufeuchte kann zu Schimmelpilzbelastung führen. In Österreich gibt es keine gesetzlichen Grenz- oder Richtwerte für Pilzsporen-Konzentrationen in der Innenraumluft von Wohnungen. Normal belastete Räume weisen erfahrungsgemäß Keimzahlen von weniger als 100 bis etwa 250 KBE/m³ (koloniebildende Einheiten pro Kubikmeter Luft) auf (Ausnahme: z.B. Räume mit zahlreichen Topfpflanzen können höhere Keimzahlen aufweisen). Aus epidemiologischen Studien geht hervor, dass gesundheitlich relevante Konzentrationen von Hefe- und Schimmelpilzen ab etwa 250 KBE/m³ Luft möglich sind, wobei diese Zahl stark von der Artenzusammensetzung der Sporen abhängig ist.

Luftdichtheit

Die Luftdichtheit von Gebäuden hat großen Einfluss auf die Behaglichkeit und den Energieverbrauch von Gebäuden. Als Maßzahl für die Luftdurchlässigkeit einer Gebäudehülle wird der n₅₀–Wert herangezogen. Dieser ist als Luftwechselrate bei einer Differenz zwischen innerem und äußerem Luftdruck von 50 Pa definiert. Mit Hilfe eines drehzahlgeregelten Ventilators, der in einem Tür- oder Fensterrahmen eingebaut ist, wird der geförderte Luftvolumenstrom bestimmt. Die Messung nach ÖN EN 13829 erfolgt sowohl bei Unterals auch bei Überdruck. Abluftanlagen sind mechanische Lüftungsanlagen (ohne Wärmerückgewinnung), die über feuchte- oder CO₂-gesteuerte Zuluftöffnungen in den Hauptaufenthaltsräumen verfügen.

Schallschutz

Bewertung			
ausgezeichnet	sehr gut	gut	befriedigend
Luftschallschutz – Trennwa	and D _{nT,w} in dB(A)		Bewertungsgewichtung:15%
$D_{nT,w} + C_{50-3150} \ge 63 \text{ dB}$	$D_{nT,w} + C_{50-3150} \ge 60 \text{ dB}$	$D_{nT,w} + C_{50-3150} \ge 55 \text{ dB}$	$D_{nT,w} \ge 55 \text{ dB}$
		$\underline{D_{nT,w}} = 61 \text{ dB}$	
		$C_{50-3150} = -3dB$	
Luftschallschutz – Trennde	cke D in dR(A)		Bewertungsgewichtung:15%
$D_{nT.w} + C_{50-3150} \ge 63 \text{ dB}$	$D_{nT,w} + C_{50-3150} \ge 60 \text{ dB}$	$D_{nT.w} + C_{50-3150} \ge 55 \text{ dB}$	$D_{nT,w} \ge 55 \text{ dB}$
D _{n1,w} + C ₅₀₋₃₁₅₀ ≥ OJ QD	Dn1,w + C50-3150 ≥ 00 db	$D_{nT,w} = 59 \text{ dB}$	D _{n1,w} ≥ 33 db
		$C_{50-3150} = -2 dB$	
		<u> </u>	
Trittschallschutz L'nT,w in dB	(A) – WHA		Bewertungsgewichtung:30%
$L'_{nT,w} \leq 35 \text{ dB}$	L' _{nT,w} ≤ 38 dB	L' _{nT,w} ≤ 43 dB	$L'_{nT,w} \le 48 \text{ dB}$
und	und	und	
$L'_{nT,w} + C_l \le 40 \text{ dB}$	$L'_{nT,w} + C_l \le 43 \text{ dB}$	$L'_{nT,w} + C_l \le 43 \text{ dB}$	
und	und	<u>L'_{nT,w} = 41 dB</u>	
$L'_{nT,w} + C_{I,50-2500} \le 45 \text{ dB}$	$L'_{nT,w} + C_{l,50-2500} \le 48 \text{ dB}$	<u>und</u>	
		$\underline{L'_{nT,w} + C_l} = 41 \text{ dB}$	
		$L'_{nT,w} + C_{l,50-2500} = 48 dB$	
Engraigäquivalenter Dauer	schallpegel (nachts) oder be	i laufondor Lüftungsanlago	
_ ·	geräusch L _{A,eq,nT} in der Nacht		Bewertungsgewichtung:30%
$L_{A,eq,nT-Nacht} \leq 16 \text{ dB(A)}$	$L_{A,eq,nT-Nacht} \leq 18 \text{ dB(A)}$	$L_{A,eq,nT-Nacht} \le 20 dB(A)$	$L_{A,95-Nacht} \le 22 dB(A) oder$
oder bei Lüftungsanlage:	oder bei Lüftungsanlage:	oder bei Lüftungsanlage:	bei Lüftungsanlage:
$L_{A,eq,nT} \leq 18 \text{ dB(A)} \text{ und}$	$L_{A,eq,nT} \leq 20 \text{ dB(A) und}$	$L_{A,eg,nT} \leq 23 \text{ dB(A) und}$	$L_{A,eq,nT} \leq 25 \text{ dB(A) und}$
$L_{C,eq,nT} \leq 10 \text{ dB(C)}$ $L_{C,eq,nT} \leq 30 \text{ dB(C)}$	$L_{C,eq,nT} \leq 20 \text{ dB(A)}$ drid $L_{C,eq,nT} \leq 35 \text{ dB(C)}$	$L_{C,eq,nT} \le 20 \text{ dB(C)}$	$L_{C,eq,nT} \le 25 \text{ dB(C)}$ $L_{C,eq,nT} \le 45 \text{ dB(C)}$
$L_{A,eq,nT-Nacht} = 14.9 dB(A)$	LC,eq,n1 \(\text{\tin}\text{\tilit{\tinte\tint{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\tint{\text{\texiclex{\text{\texicq}\tint{\text{\texiclex{\tex{\texit{\text{\text{\text{\text{\tinte\text{\texi}\text{\ti	LC,eq,n1 \(\text{\tin}\text{\tint}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\tett{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ticl{\text{\text{\text{\text{\text{\text{\text{\texict{\texicl{\til\tint{\texicl{\text{\texitile\texict{\texict{\tiint{\texitile\tint{\texict{\texitile\tini\tint{\tii}\texitile\tini\tint{\	Lc,eq,n1 2 TO GD(C)
Standortbezog. Außenlärm	nachtpegel (gem. ÖN B 811	5-2) in dB(A)	Bewertungsgewichtung:10%
$L_{A,eq}$ (Nacht) ≤ 45 dB(A)	$L_{A,eq}$ (Nacht) ≤ 50 dB(A)	$L_{A,eq}(Nacht) \le 55 dB(A)$	$L_{A,eq}$ (Nacht) \leq 60 dB(A)
		$L_{A,eq}$ (Nacht) = 55 dB(A)	

Standortbezogener Außenlärmnachtpegel

Dieser Kennwert wird über Schallimmissions- oder Umgebungslärmkarten bestimmt und gibt Auskunft über die Grundlärmbelastung eines Standorts. Er wird für jene Fassadenbereiche bestimmt, die am stärksten einer Schallimmission ausgesetzt sind. Der Nachtpegel wird deshalb herangezogen, weil er in der Regel für sensible Wohnbereiche (Schlafräume, etc.) kritischer als der Außenlärmpegel bei Tag eingestuft wird.

Luftschallschutz

Der Schutz vor Geräuschen, wie z.B. Gespräche, Radio, Telefon, Fernseher etc. aus der Nachbarwohnung wird als Luftschallschutz bezeichnet, da die Lärmquelle Luft zu Schwingungen anregt. Der Luftschallschutz wird durch eine Differenzmessung der Schallpegel in den betreffenden Räumen bestimmt z.B. zwischen zwei Räumen benachbarter Wohnungen. Der Luftschallschutz wird als Standard-Schallpegeldifferenz $D_{nT,w}$ angegeben: je größer $D_{nT,w}$, umso besser ist der Luftschallschutz. In den höheren Bewertungsklassen werden die tiefen Frequenzen durch die Verwendung von Spektrumanpassungswerte $D_{nT,w} + C_{50-2500}$ mit berücksichtigt. Die Messungen erfolgen gemäß ÖN EN ISO 16283-1.

Trittschallschutz

Der Schutz vor Geräuschen aus der Nachbarwohnung durch Gehen, Klopfen, Sesselrücken etc. wird als Trittschallschutz bezeichnet, da die Lärmquelle die Geschoßdecke oder andere Bauteile direkt zu Schwingungen anregt. Der Trittschallschutz wird durch die Messung des Schallpegels in dem zu schützenden Raum bestimmt. Der Trittschallschutz wird als bewerteter Standard-Trittschallpegel $L'_{nT,w}$ angegeben. Je kleiner $L'_{nT,w}$ also je kleiner der Schallpegel im zu schützenden Raum ist -, umso besser ist der Trittschallschutz. Zur Berücksichtigung typischer Gehgeräusche wird ein Spektrum-Anpassungswert für Gehen C_l und sowie für tiefe Frequenzbereiche $C_{l,50-2500}$ angeführt. Die Messungen erfolgen gemäß ÖN EN ISO 16283-2.

Energieäquivalenter Dauerschallpegel

Der energieäquivalente Dauerschallpegel $L_{A,eq,nT}$ wird als jener Schalldruckpegel errechnet, der bei dauernder Einwirkung dem unterbrochenen Geräusch oder Geräusch mit schwankendem Schalldruckpegel im Innenraum energieäquivalent ist. Zur ÖKOPASS Bewertung herangezogen wird die lauteste halbe Stunde in der Nachtkernzeit (00:00 bis 05:00 Uhr) bei geschlossenen Fenstern. Die Messungen erfolgen gemäß ÖN S 5004.

Gleichbleibendes Lüftungsgeräusch L_{A,eq,nT} und L_{C,eq,nT} (beim Betrieb einer Lüftungsanlage)

Im Unterschied zum maximalen Anlagengeräuschpegel, der die Spitzenwerte erfasst, bildet der $L_{A,eq,nT}$ das gleichbleibende Dauergeräusch einer Lüftungsanlage im Betrieb ab. Der C-bewertete Dauerschallpegel dient der Beurteilung von Störgeräuschen der Lüftungsanlage in tieferen Frequenzen. Gemessen wird in den Schlafräumen bei Nacht. Die Messungen erfolgen gemäß ÖN EN ISO 16032.

Tageslicht und Besonnung

Bewertung			
ausgezeichnet	sehr gut	gut	befriedigend

Punktueller Tageslichtfaktor (Verhältnis der Beleuchtungsstärke innen zu außen)						
im Hauptwohnraum Bewertungsgewichtung:60%						
Mindestens 85 % der	Mindestens 25 % der					
Wohnungen haben einen	Wohnungen haben einen					
Tageslichtfaktor größer <u>einen Tageslichtfaktor</u> Tageslichtfaktor größer Tageslichtfaktor größer						
2,0 %						

Belichtung mit direktem Sonnenlicht im Hauptwohnraum			
(Sonnenstunden bei tiefstem Sonnenstand am 21.12.)			Bewertungsgewichtung:40%
Mindestens 85 % der	Mindestens 55 % der	Mindestens 40 % der	Mindestens 25 % der
Wohnungen haben	Wohnungen haben	Wohnungen haben	Wohnungen haben
mindestens	mindestens	<u>mindestens</u>	mindestens
1,5 Sonnenstunden	1,5 Sonnenstunden	1,5 Sonnenstunden	1,5 Sonnenstunden
(direktes Sonnenlicht) im	(direktes Sonnenlicht) im	(direktes Sonnenlicht)	(direktes Sonnenlicht) im
Hauptwohnraum	Hauptwohnraum	im Hauptwohnraum	Hauptwohnraum
bei tiefstem Sonnenstand am	bei tiefstem Sonnenstand am	bei tiefstem Sonnenstand am	bei tiefstem Sonnenstand am
21.12.	21.12.	21.12.	21.12.

Punktueller Tageslichtfaktor

Der Tageslichtfaktor wird für die IBO ÖKOPASS Bewertung im Hauptwohnraum in einer Raumtiefe von 2 m vom Fenster entfernt, 1 m Seitenabstand von der Wand und 0,85 m über dem Fußboden ermittelt. Je größer der Tageslichtfaktor ist, desto heller ist die Wohnung. Mit einem Tageslichtfaktor von 2,0 % in 2 m Raumtiefe wird eine gute Tageslichtversorgung im Hauptwohnraum erreicht.

Sehr helle Wohnungen haben ausreichend Fensterflächen und Innenoberflächen mit hohem Reflexionsgrad. Sie werden nicht übermäßig durch Balkone, Loggien (oder ähnlichem) bzw. durch Nachbargebäude oder geografische Gegebenheiten (wie Hanglage) verschattet.

Belichtung mit direktem Sonnenlicht

Die Belichtung mit direktem Sonnenlicht beschreibt die direkte Sonneneinstrahlung bei tiefem Sonnenstand, wie sie am Tag der Wintersonnenwende (21.12. – kürzeste Tageslänge) gegeben ist. Der Einfall direkten Sonnenlichtes hängt vom Standort (geografische Lage), der Orientierung des Raums, der Verschattung durch Nachbargebäude oder Berge bzw. von der Eigenverschattung durch Balkone, Loggien, Gebäudevorsprünge und vom jahreszeitlichen Wechsel der Sonnenstandshöhe ab.

Eineinhalb Stunden direktes Sonnenlicht im Hauptwohnraum bei tiefstem Sonnenstand am 21.12. entsprechen einem Viertel der theoretisch möglichen Sonnenstunden an diesem Tag. Sie werden von südseitig ausgerichteten Räumen, die keine Nachbargebäude haben, gut erreicht.

S < 0,01 mW/m²

Elektromagnetische Qualität

Bewertung			
ausgezeichnet	sehr gut	gut	befriedigend
Magnetische Felder im Nie	derfrequenzbereich B (magr	netische Flussdichte) in [nT]	
bei Tag			Bewertungsgewichtung:30%
B < 100 nT	B < 200 nT	B < 400 nT	B < 1.000 nT
<u>B = 20 nT</u>			
_			
E (elektrische Feldstärke) in	[V/m] für Wechselfelder bei	Tag	Bewertungsgewichtung:30%
E < 10 V/m	E < 20 V/m	E < 30 V/m	E < 50 V/m
<u>E = 1 V/m</u>			
Niederfrequent gepulste hochfrequente Felder (Leistungsflussdichte) S [mW/m²],			
Frequenzbereich 800–3.000 MHz (bei geschlossenem Fenster)			Bewertungsgewichtung:40%

 $S < 1.0 \text{ mW/m}^2$

grenzwert) $S = 0.16 \text{ mW/m}^2$

(Salzburger Vorsorge-

 $S < 3.0 \text{ mW/m}^2$

Hochfrequenzfeldmessung: Übersichtsmessung

S < 0,1 mW/m²

Magnetische Felder im Niederfrequenzbereich

Elektromagnetische Felder im Niederfrequenzbereich stehen im Verdacht, gesundheitliche Auswirkungen zu haben. Aus dem Prinzip der Gesundheitsvorsorge heraus werden daher Orientierungswerte für eine längerfristige Exposition definiert, die sich an der Schweizer NIS-Verordnung und den Empfehlungen des Katalyse-Instituts orientieren, womit kurz- und langfristige Gesundheitsbeeinträchtigungen nach heutigem Wissensstand sicher ausgeschlossen werden können.

Die Stärke der magnetischen Wechselfelder im Nahbereich elektrischer Anlagen (wie Hochspannungs-Freileitungen, -Erdkabel, etc.) hängt von zahlreichen Faktoren ab, wie beispielsweise: Betriebsspannung, Phasenbelegung, Leiteranordnung, Form der natürlichen Umgebung, Abstand von der Trasse, jahreszeitliche Schwankungen, u.ä. Eine wirksame Möglichkeit zur Verringerung von Magnetfeldern ist ein entsprechender Abstand von der Feldquelle. Transformatorenstationen selbst verursachen nur ein sehr kleinräumiges Feld, erhöhte magnetische Felder werden vor allem durch vom Trafo wegführende Sekundärkabel verursacht.

Elektrische Feldstärke

Alle elektrischen Leitungen und Apparate sind von elektrischen und magnetischen Feldern umgeben. Elektrische Felder bestehen in der Umgebung von Leitungen, unabhängig davon, ob Strom fließt.

Magnetische Felder entstehen durch die Bewegung elektrischer Ladungen, also durch elektrische Ströme. Wo Strom fließt, ist neben dem elektrischen auch ein magnetisches Feld vorhanden.

Die elektrische und magnetische Feldstärke künstlich erzeugter Felder soll so gering wie möglich sein. Die hier angegebenen Werte sind als Vorsorgewerte zu verstehen und liegen bis zu einem Faktor 20 unter den gesetzlichen Richtwerten.

Niederfrequent gepulste hochfrequente Felder

Die Beurteilung von biologischen Wirkungen im Niedrigdosisbereich ausgehend von Mobilfunksendeanlagen ist zum gegenwärtigen Zeitpunkt umstritten. Die Richtwertempfehlung (4.500–10.000 mW/m² abhängig von der Frequenz) der ICNIRP (International Commission on Non-Ionizing Radiation Protection), der auch die EU-Ratsempfehlung sowie die ÖNORM ÖVE/ÖNORM E 8850 folgt, orientiert sich lediglich an einer möglichen thermischen Wirkung. Laut österreichischer Ärztekammer liegen diese Werte zum Teil um Größenordnungen über jenen Werten, in denen Schäden auf die Gesundheit nachgewiesen wurden. In der Salzburger Resolution zu Mobilfunksendeanlagen (Juni 2000) werden folgende Werte bzw. Vorsorgemaßnahmen gefordert - der Wert für niederfrequent-pulsmodulierte hochfrequente Immissionen entspricht auch dem umweltmedizinischen Vorsorgewert für Österreich:

- Immissionen hochfrequenter elektromagnetischer Felder (gesamt): < 100 mW/m²
- Summe der niederfrequent-pulsmodulierten hochfrequenten Immissionen von Mobilfunksende- anlagen (wie z.B. GSM-Basisstationen): < 1 mW/m²

ÖKOLOGISCHE QUALITÄT

Ökologische Qualität der Baustoffe und Konstruktionen

Bewertung			
ausgezeichnet	sehr gut	gut	befriedigend

Ökoeffizienz (der thermischen Gebäudehülle, inklusive Trenndecken)

Ökoindex Ol3 _{BG1,BGF}			Bewertungsgewichtung:30%
$OI3_{BG1,BGF} \le 45$	$OI3_{BG1,BGF} \leq 80$	$OI3_{BG1,BGF} \leq 140$	$OI3_{BG1,BGF} \leq 260$
		Stiege 1: OI3 _{BG1,BGF} = 120	
		Stiege 2: OI3 _{BG1,BGF} = 126	
		Stiege 3: OI3 _{BG1,BGF} = 144	
		Stiege 4: OI3 _{BG1,BGF} = 139	

Entsorgungsindikator El10 (der Gebäudehülle, inkl. Trenndecken, Fenster/Türen, der Gesamtlebensdauer)

Entsorgungsindikator El10			Bewertungsgewichtung:20%
EI10 ≤ 15,00	EI10 ≤ 20,00	EI10 ≤ 27,00	EI10 ≤ 35,00
		Stiege 1: EI10 = 24,98	
		Stiege 2: El10 = 25,22	
		Stiege 3: EI10 = 23,08	
		Stiege 4: EI10 = 22,72	

HFKW-und PVC-Freiheit

HFKW-Freiheit *)	Bewertungsgewichtung:0%
Musskriterium: HFKW-Freiheit für Dämmplatten, M	lontageschäume, etc. ist erfüllt.

PVC-Freiheit *)			Bewertungsgewichtung:25%
für mind. 6	<u>für mind. 5</u>	für mind. 4	für mind. 2
Produktgruppen erfüllt	Produktgruppen erfüllt	Produktgruppen erfüllt	Produktgruppen erfüllt

Produkte mit Umweltzeichen (ökologisch optimierte Produkte)

Produkte mit Umweltzeichen *)		Bewertungsgewichtung:25%	
Einsatz in mind. 10	Einsatz in mind. 7	Einsatz in mind. 4	Einsatz in mind. 2
Bauteilschichten (und 3	Bauteilschichten (und 3	Bauteilschichten (und 2	Bauteilschichten (und 1
Bauteilgruppen)	<u>Bauteilgruppen</u>)	Bauteilgruppen)	Bauteilgruppe)

*) Die Bewertung bezieht sich auf die Standardausstattung des Bauträgers.

OI3 Index und Entsorgungsindikator

Mittels dem Online-Programm ECO2SOFT werden die ökologischen Kennwerte und die Entsorgungseigenschaften der verwendeten Baustoffe und Konstruktionen erhoben und der Ökoindex OI3 sowie der Entsorgungsindikator EI10 berechnet. Je besser die Einstufung des OI3 Index und des Entsorgungsindikators sind, desto ressourcenschonender erfolgt die Herstellung des Gebäudes, desto geringer sind die Umweltbelastungen durch die Produktion der eingesetzten Baumaterialien und desto bessere Entsorgungseigenschaften weist das Gebäude auf.

HFKW-Freiheit

HFKW (teilhalogenierte Fluor-Kohlenwasserstoffe) sind klimaschädliche Chemikalien und daher in Österreich in vielen Anwendungen verboten. Das Kriterium ist eine Mussbestimmung. Folgende Produktgruppen werden im Detail untersucht: XPS-Dämmplatten (insbes. über 8 cm Dicke), PU-Montageschäume, PU-Reiniger, Markierungssprays und ähnliche Produkte in Druckgasverpackungen, PUR/PIR-Dämmstoffe, etc.

PVC-Freiheit

PVC wird aus problematischen Ausgangsstoffen (z.B. Vinylchlorid, ein Stoff der als eindeutig krebserzeugend eingestuft ist) hergestellt und kann problematische Zusatzstoffe enthalten. Insbesondere in Weich-PVC, woraus in erster Linie Bodenbeläge, Tapeten, Folien und Kabel hergestellt werden, sind Weichmacher mit einer Gesamtmenge von bis zu 50 % enthalten. Der am häufigsten eingesetzten Weichmacher DEHP wird von der EU Kommission als "fortpflanzungsgefährdend" eingestuft. Im Brandfall entstehen Rauchgase, die besonders korrosiv sind. Für die folgenden Bereiche wird der Einsatz PVC-freier Materialien empfohlen:

- 1. Folien: Kunststofffolien und Vliese jeglicher Art und Dichtstoffe
- 2. Fußbodenbeläge inkl. Sockelleisten und Wandbekleidungen (Tapeten)
- 3. Wasser-, Abwasserrohre (außer erdverlegt), Lüftungsrohre (Zu- und Abluftrohre) im Gebäude
- 4. Fenster und Türen/Tore
- 5. Sonnen- und/oder Sichtschutz am Objekt
- 6. Elektroinstallationsmaterialien (Kabel, Leitungen, Rohre, Dosen etc.)

Produkte mit Umweltzeichen

Die Minimierung schädlicher Umwelt- und Gesundheitsauswirkungen kann durch den Einsatz ökologisch optimierter Baustoffe erreicht werden: Produkte mit Umweltzeichen wurden über den gesamten Lebenszyklus von der Herstellung bis zur Entsorgung überprüft und gehören zu den besten in ihrer Produktkategorie. Als hohe Umweltstandards werden das Österreichische Umweltzeichen, natureplus und das IBO-Prüfzeichen anerkannt. Für bestimmte Produktgruppen sind weitere Prüfzeichen (wie Nordic Swan, Blauer Engel,...) zugelassen. Die Beurteilung erfolgt für fünf Bauteilgruppen (Außenwände, Innenwände/Trennwände, Zwischendecken, Dach oder oberste Geschoßdecke, Bodenplatte oder Kellerdecke). Geprüfte Produkte, die zumindest zu 80 % aller Flächen der genannten Bauteilgruppen eingebaut sind, werden anerkannt.

Gesamtenergiekonzept

Bewertung			
ausgezeichnet sehr gut gut befriedigend			
ab 14 Punkte	11–13 Punkte	8–10 Punkte	0–7 Punkte
		10 Punkte	

Nutzenergiebedarf: spezifischer HWB_{BGF,WG,RK} (bezogen auf das Referenzklima):

Die Anforderungen der OIB-Richtlinie 6 zum 1.1.2017 werden eingehalten	
$(HWB_{BGF,WG,Ref} \le 16 (1+3 / Ic), f_{gee,RK} \le 0.85). (1 Punkt).$	
Die Anforderungen der OIB-Richtlinie 6 zum 1.1. 2021 werden bis zu 62 %	
unterschritten oder HWB _{BGF,WG,Ref} ≤ 10 kWh/m²a (10 Punkte). Dazwischen wird	
interpoliert.	
<u>Unterschreitung:</u>	
Stiege 1 32 %. Stiege 2. 3 und 4: 34 %	6 Punkte

Wärmeversorgung – Raumwärme:

Fern-/Nahwärme (aus > 90 % Abwärme oder KWK)	4 Punkte
Fern-/Nahwärme (aus > 70–90 % Abwärme oder KWK)	3 Punkte
Fern-/Nahwärme (aus > 50–70 % Abwärme oder KWK)	2 Punkte
Fern-/Nahwärme (aus Biomasseheizwerken, ohne KWK)	3 Punkte
Biomasseheizungsanlage (vor Ort)	4 Punkte
Wärmepumpenheizungsanlage (Erdwärme / Grundwasser)	4 Punkte
Wärmepumpenheizungsanlagen (Luft)	2 Punkte
Gasbrennwertkessel/Ölbrennwertkessel	0 Punkte

Wärmeversorgung – Warmwasser:

Thermische Solaranlage: jährlicher Deckungsgrad am Warmwasserbedarf	1–4 Punkte
WW – Fern-/Nahwärme (aus > 90 % Abwärme oder KWK)	1 Punkt

Stromerzeugung vor Ort:

PV-Anlage	
Jährlicher Stromertrag: ca. 33 kWh/m² überbaute Fläche	2 Punkte
Stromerzeugung vor Ort in Kombination mit Wärmepumpe und thermisch	Zusätzlich 1 Punkt
aktiven Bauteilelementen oder sonstigen Kurzzeit-Speichersystemen	

Energiemonitoring

Energiemonitoring über mindestens 2 Jahre	2 Punkte
Smart Meter in den Wohneinheiten	1 Punkt

Gesamtenergiekonzept

Das Gesamtenergiekonzept berücksichtigt:

- Die Energiekennzahl (der spezifische Heizwärmebedarf für Wohngebäude, bezogen auf die konditionierte Bruttogrundfläche HWB_{BGF,WG,Ref}) nach dem Berechnungsverfahren der OIB-Richtlinie 6 (Ausgabe 2015) und des OIB-Leitfadens dient der Vergleichbarkeit des energetischen Standards eines Gebäudes. Der Berechnung der Energiekennzahl liegen standardisierte Klimadaten (Referenzklima) und interne Wärmegewinne sowie ein standardisiertes Nutzerverhalten zugrunde. Die errechnete Energiekennzahl kann daher von den tatsächlichen Verbrauchswerten der Nutzerlnnen abweichen. Im Geschoßwohnbau ergeben sich je nach Lage der Wohnung im Gebäude unterschiedliche Energiekennzahlen.
- Die Art der Energieträger: Fern-/Nahwärme aus Abwärmeprozessen, Kraft-Wärme-Kopplung (KWK) und erneuerbare Energieträger wie Biomasse, Nutzung der Umgebungswärme (über Wärmepumpen) oder direkte Nutzung der Sonnenenergie (für Warmwasserbereitung oder Stromerzeugung) verbessern das ökologische Profil und erhöhen daher die Punktezahl.
- Besonders energieeffiziente Maßnahmen, wie z.B. eine energieeffiziente Wärmepumpen-Heizungsanlage (Erdwärme/Grundwasser) in Kombination mit thermisch aktiven Bauteilelementen und optimierten Pumpen, werden mit 5 Punkten belohnt
- Die Punkteverteilung für thermische Solaranlagen ist abhängig vom jährlichen Deckungsgrad am Warmwasserbedarf:

 $30 \% \le Deckungsgrad < 40 \%$:1 Punkt $40 \% \le Deckungsgrad < 50 \%$:2 Punkte $50 \% \le Deckungsgrad < 60 \%$:3 Punkte $\ge 60 \% Deckungsgrad$:4 Punkte

Wird die Solarthermie zur teilsolaren Raumwärmeversorgung und WW-Bereitung (inkl. Solarspeicher) ausgelegt und mit thermisch aktiven Bauteilelementen kombiniert, werden 4 Punkte vergeben.

- Die Punkteverteilung für Photovoltaik-Anlagen ist abhängig von der überbauten Fläche und den daraus resultierenden Stromerträgen:
 - > 0,1 bis 0,3 m² PV/m² überbauter Fläche (ca. 10–30 kWh Stromertrag/m² überbauter Fläche): 1 Punkt > 0,3 bis 0,5 m² PV/m² überbauter Fläche (ca. 30–50 kWh Stromertrag/m² überbauter Fläche): 2 Punkte > 0,5 bis 0,7 m² PV/m² überbauter Fläche (ca. 50–70 kWh Stromertrag/m² überbauter Fläche): 3 Punkte ≥ 0,7 m² PV/m² überbauter Fläche (über 70 kWh Stromertrag/m² überbauter Fläche): 4 Punkte Analoge Einstufungen gelten für die Stromerträge pro m² überbauter Fläche aus anderen erneuerbaren Energieträgern (wie Windkraft, etc.).
- Das Energiemonitoring über einen Zeitraum von mindestens 2 Jahren muss folgende Werte beinhalten: Erfassung des gesamten Stromverbrauchs und (bei Bedarf) des Pumpenhilfsstroms für die Wärmepumpe Nutzenergie getrennt nach Hauptnutzungszonen Lastprofil des Energieträgers für Raumwärme und Warmwasser Innen- und Außentemperatur

Wassernutzung

Bewertung			
ausgezeichnet	sehr gut	gut	befriedigend
ab 10 Punkte	7–9 Punkte	4–6 Punkte	0–3 Punkte
	<u>8 Punkte</u>		

Das WC ist mit einer Wasserspar- oder Stopptaste ausgerüstet. 1 Punkt	
Die Armaturen sind mit Durchflussbegrenzern ausgestattet:	
Maximaler Durchfluss: 9 I/min bei 3 bar oder	1 Punkt
Maximaler Durchfluss: 6 I/min bei 3 bar	2 Punkte
Die Duschköpfe sind mit Durchflussbegrenzern ausgestattet.	1 Punkt
Maximaler Durchfluss: 12 I/min bei 3 bar	
Ein eigener Kaltwasserzähler für jede Wohneinheit	1 Punkt
Regen- oder Grundwassernutzung für die Bewässerung der Grünanlagen 1 Punkt	
Regen- oder Grundwassernutzung für die WC-Spülung	2 Punkte

Versiegelungsgrad > 50 % 0 Punkte	
Versiegelungsgrad 25–50 %	1 Punkt
Versiegelungsgrad < 25 %	3 Punkte
Begrünte Dachflächen ≥ 60 %	1 Punkt

Versiegelungsgrad in % = Sonstige versiegelte Flächen / (Grundstücksfläche – Bruttogrundrissfläche des Erdg.) x 100

Versiegelungsgrad

Der Versiegelungsgrad bezeichnet das Ausmaß der mit wasserundurchlässigen Schichten wie Asphalt, Beton versehenen Grundstücksfläche. Berücksichtigt wird dabei die unverbaute Fläche. Je geringer der Versiegelungsgrad ist, desto besser kann Regenwasser versickern, damit werden das Kanalsystem entlastet und das Bodenleben sowie der Wasserhaushalt verbessert.

Glossar:

[dB]	Dezibel: Einheit des Schallpegels
[dB(A)]	(A) A-bewertet
[dB(C)]	(C) C-bewertet
[LW/h]	Luftwechsel pro Stunde
EI10	Beim Entsorgungsindikator EI10 werden die vollständigen Konstruktionen der thermischen
	Gebäudehülle inkl. Trenndecken und die Erneuerungszyklen innerhalb der
	Gesamtlebensdauer des Objekts berücksichtigt.
Fanger	P.O. Fanger: renommierter dänischer Wissenschafter im Bereich Innenraumluft und
	Thermischer Komfort
	Der Heizwärmebedarf HWB bezeichnet die Menge an Wärme in [kWh/a], die einem
HWB [kWh/m²a]	Gebäude/einem Raumverband pro Jahr zugeführt werden muss, um normgerechte Raum-
	temperaturen bei Standard-Nutzerverhalten und einem Referenzklima aufrechtzuerhalten.
[KBE/m³]	koloniebildende Einheiten (Pilzsporen, Bakterien etc.) pro Kubikmeter Luft
MAK	Maximale Arbeitsplatz-Konzentration von gesundheitsschädlichen Gasen, Dämpfen und
MAK	Stäuben am Arbeitsplatz
	Beim Ökoindikator OI3 _{BG1,BGF} werden die vollständigen Konstruktionen der thermischen
OI3 _{BG1,BGF}	Gebäudehülle inkl. Trenndecken berücksichtigt. Die Nutzungsdauer der Bauteilschichten
	wird nicht berücksichtigt.
OIB-RL 6	OIB-Richtlinie 6: Richtlinie herausgegeben vom Österreichischen Institut für Bautechnik OIB
OID-NL 0	zum Thema Energieeinsparung und Wärmeschutz
Passivhaus	Passivhäuser sind Gebäude, deren Heizwärmebedarf HWB 15 kWh/m ² EBFa nicht übersteigt.
	PHPP (Passivhausprojektierungspaket) ist ein Nachweisverfahren für den Passivhaus-
PHPP	Standard auf der Basis von Energiekennwerten. Es wurde vom Passivhausinstitut
	Darmstadt erstellt.
	parts per million: Teile pro Million; Konzentrationsangabe: gibt an, wie viele Gewichts- oder
ppm	Volumseinheiten in einer Substanz in einer Million Gewichts- oder Volumseinheiten einer
	anderen Substanz enthalten sind.
[nT]	Tesla: Einheit der magnetischen Feldstärke (nT = Nanotesla = 10 ⁻⁹ Tesla)
Summe VOC	Total volatile organic compounds: Summe der flüchtigen Kohlenwasserstoffe
	Wärmedurchgangskoeffizient: Der U-Wert gibt an, welche Wärmemenge durch einen
U-Wert	Quadratmeter eines Bauteils pro Sekunde bei einer Temperaturdifferenz von einem Kelvin
	hindurchgeht [W/m²K]. Je kleiner der U-Wert ist, desto besser ist der Wärmeschutz.
[V/m]	Volt pro Meter: Einheit der elektrischen Feldstärke
VDI 6030	Eine Richtlinie des Vereins Deutscher Ingenieure zur Auslegung von Raumheizkörpern.
	Neben der Deckung der Heizlast sollen Behaglichkeits- defizite gemindert oder beseitigt
	werden.
WRG	Wärmerückgewinnung: warme verbrauchte Luft wird über einen Wärme- tauscher geführt,
	und die Abwärme zur Zuluft-Vorerwärmung genutzt