

ENDBEWERTUNG

IBO ÖKOPASS

WIEN XI., SIMMERINGER HAUPTSTRASSE 166 – 170 BAUTEILE 2 – 6

Bauträger:

Gemeinnützige Bau-, Wohn- und Siedlungsgenossenschaft "Neues Leben" 1100 Wien, Troststraße 108

Architekt:

Helmut Wimmer 1050 Wien, Margaretenstraße 70/D

Wien, 24.06.2011

KRITERIEN FÜR DEN IBO ÖKOPASS

Bewertungsschema

Die Bewertung erfolgt in 4 Stufen. Die einzelnen Kriterien werden in Teilkategorien beurteilt. Die Grundlagen der Beurteilung, etwa Messergebnisse, sind im umfassenden Endbericht einsehbar. Die Bewertung bezieht sich auf den Zeitpunkt der Messungen. Es wird die gesamte Wohnhausanlage durch stichprobenartige Untersuchungen bewertet. Einzelne Wohnungen können je nach Lage spezifische Eigenheiten aufweisen.

Wertebereich:

Eigenschaft	Bewertung
ausgezeichnete Qualität (ökologisch hervorragend)	ausgezeichnet
sehr gute Qualität (ökologisch sehr günstig)	sehr gut
gehobene Qualität (ökologisch günstig)	gut
erfüllt IBO ÖKOPASS-Mindestkriterien	befriedigend

Kriterien:

Die Anzahl der Kriterien wurde auf 8 komprimiert, die in folgende Bereiche unterteilt sind:

Nutzungsqualität

- Behaglichkeit in Sommer und Winter
- Innenraumluftqualität
- Schallschutz
- Tageslicht und Besonnung
- Elektromagnetische Qualität

Ökologische Qualität

- Ökologische Qualität der Baustoffe und Konstruktionen
- Gesamtenergiekonzept
- Wassernutzung

Diese Kriterien beschreiben das Engagement des Bauträgers, Wohnungen behaglich und ökologisch zu gestalten. Grundstücksabhängige Parameter wie etwa Verkehrsanbindung werden in diesem Pass nicht berücksichtigt.

Endbewertung IBO ÖKOPASS

Wien XI, Simmeringer Hauptstraße 166 – 170, Bauteil 2 – 6

Seite 2

NUTZUNGSQUALITÄT

Behaglichkeit im Sommer und Winter

Bewertung			
ausgezeichnet	sehr gut	gut	befriedigend

Thermische Qualität de	Bewertungsgewichtung:50%		
Passivhausstandard	Niedrigenergiehaus-	Niedrigenergiehaus-	Standard nach
der Gebäudehülle	Standard nach	<u>Standard</u>	Bauordnung
(Außenwand:	OIB*/Konvektions-		
U < 0,15 W/m ² K,	heizung		
Fenster:	Anforderungsstufe 3		
U < 0,7 W/m ² K)	nach VDI 6030 erfüllt		
<u>oder</u>	(Fensterglas 0,9 W/m²K)		
Niedrigenergiehaus-			
Standard (NEH)* nach			
OIB*/ Behaglichkeit			
nach Fanger* mit			
<u>Strahlungs</u> heizung			
Anforderungsstufe 3			
nach VDI 6030* erfüllt			

Überhitzungsneigung (S	Bewertungsgewichtung:50%		
Immissionsflächen-	Immissionsflächen-	Immissionsflächen-	Sommertauglichkeit
bezogene speicher-	bezogene speicher-	bezogene speicher-	nach ÖN B 8110 T.3:
wirksame Masse	wirksame Masse	wirksame Masse	Vereinfachter Nach-
5000 kg/m ² über	2500 - 5000 kg/m ²	1000 - 2500 kg/m ²	weis 0 - 1000 kg/m ²
Grenzwert	über Grenzwert	über Grenzwert	über Grenzwert
<u>oder</u>	3210,6 kg/m2	<u>oder</u>	<u>oder</u>
Temperaturmaximum	(Mittelwert aus 3	Temperaturmaximum	Temperaturmaximum
nach thermischer	kritischen Räumen)	nach thermischer	nach thermischer
Simulation < 25℃ im	<u>oder</u>	Simulation < 26,5℃	Simulation < 27℃ im
Hauptwohnraum	Temperaturmaximum	im Hauptwohnraum	Hauptwohnraum
	nach thermischer		
	Simulation < 26℃ im		
	Hauptwohnraum		

Endbewertung IBO ÖKOPASS

Wien XI, Simmeringer Hauptstraße 166 – 170, Bauteil 2 – 6

Thermische Qualität der Außenhülle

Je besser Außenwände gedämmt sind, desto höher sind im Inneren die Oberflächentemperaturen. Dies gilt insbesondere für Glasflächen: Fenster mit einem niedrigen U-Wert* sind wärmer. Dadurch wird der Unterschied zwischen Raumlufttemperatur und Oberflächentemperatur der raumumschließenden Flächen geringer – was vom Menschen als behaglich empfunden wird (und gleichzeitig Heizenergie spart). Ein weiterer Effekt ist der Kaltluftabfall an Fenstern und Balkontüren mit zu hohen U-Werten. Die kalte Luft im Bodenbereich kann kalte Füße bedingen.

Überhitzungsneigung / Sommertauglichkeit

Im Sommer können Wohnungen unangenehm heiß werden. Ausreichend schwere Bauteile erwärmen sich tagsüber nur langsam, reduzieren dadurch die Raumtemperatur und geben erst während der kühleren Nacht überschüssige Temperatur wieder ab. Mithilfe von Simulationen bzw. Berechnungen lässt sich die sommerliche Überhitzungsneigung überprüfen. Je niederer die durchschnittliche Temperatur ist, desto behaglicher wird sie im Sommer empfunden.

Innenraumluftqualität

Bewertung			
ausgezeichnet	sehr gut	gut	befriedigend

Summe der flüchtigen Kohlenwasserstoffe + Aldehyde				
(Siedepunkt bis 250 ℃) Bewertungsgewichtung			Bewertungsgewichtung:30%	
Summe VOC < 0,3	Summe VOC < 0,3 Summe VOC < 0,6 Summe VOC < 1,2			
mg/m³	mg/m³ mg/m³ mg/m³			
(4 Wochen nach	(4 Wochen nach	(4 Wochen nach	(4 Wochen nach	
Freigabe) Freigabe) Freigabe)				
			$VOC = 1.4 \text{ mg/m}^3$	

Formaldehyd			Bewertungsgewichtung:20%
kleiner als 0,04 ppm*	kleiner als 0,06 ppm	kleiner als 0,08 ppm	kleiner als 0,1 ppm
		<u>0,07 ppm</u>	

Schimmelpilzbelastung Bewertungsgewichtung:20%			
Koloniebildende	Koloniebildende	Koloniebildende	Koloniebildende
Keime [KBE]*:	Keime [KBE]:	Keime [KBE]:	Keime [KBE]:
x < 50 KBE/m ³	x < 150 KBE/m ³	x < 300 KBE/m ³	x < 500 KBE/m ³
		x= 250 KBE/m ³	

Luftdichtigkeit			Bewertungsgewichtung:30%
n ₅₀ < 0,6 [LW/h]* bei	n ₅₀ < 1,0 [LW/h]* bei	n ₅₀ < 2,0 [LW/h] und	n ₅₀ > 3,0 [LW/h] bei
mechanischer	mechanischer	Abluftanlage	Fensterlüftung
Komfortlüftung	Komfortlüftung	$n_{50} = \text{max. } 1,5 \text{ [LW/h]}$	
		oder	
		n ₅₀ < 3,0 [LW/h] bei	
		Fensterlüftung	

Flüchtige Kohlenwasserstoffe

Flüchtige Kohlenwasserstoffe oder VOC (Volatile organic compounds) kommen u.a. als in Lösungsmitteln in Farben, Lacken, Klebstoffen und Ausgleichsmassen vor. Für VOC gibt es Grenzwerte am Arbeitsplatz, die sogenannten MAK-Werte*, die gesetzlich vorgeschrieben sind. Für die VOC-Belastung von Wohnungen gibt es keine gesetzlichen Grenzwerte. Die hier festgesetzten Werte orientieren sich an Vorsorgewerten, die weit niedriger angesetzt sind als die MAK-Werte.

Formaldehyd

Formaldehyd ist ein stechend riechendes Gas, das u.a. in Tabakrauch, Spanplatten und Holzwerkstoffen, Klebern, Lacken vorkommt. Gesetzlich begrenzt sind die Ausgasungsraten von Holzwerkstoffen mit 0,1 ppm*, andere mögliche Quellen werden nicht berücksichtigt. Der von der Weltgesundheitsorganisation WHO empfohlene Wert liegt bei 0,05 ppm. In diesem Kriterium wird der gesamte Gehalt an Formaldehyd in einer Kontrollwohnung überprüft.

Schimmelpilzbelastung

Erhöhte Luftfeuchtigkeit durch Nutzerverhalten, Baumängel oder Restbaufeuchte kann zu Schimmelpilzbelastung führen. In Österreich gibt es keine gesetzlichen Grenz- oder Richtwerte für Pilzsporen-Konzentrationen in der Innenraumluft von Wohnungen. Normal belastete Räume weisen erfahrungsgemäß Keimzahlen von weniger als 100 bis etwa 250 KBE*/m³ (koloniebildende Einheiten pro Kubikmeter Luft) auf (Ausnahme: z.B. Räume mit zahlreichen Topfpflanzen können höhere Keimzahlen aufweisen). Aus epidemiologischen Studien geht hervor, dass gesundheitlich relevante Konzentrationen von Hefe- und Schimmelpilzen ab etwa 250 KBE/m³ Luft möglich sind, wobei diese Zahl stark von der Artenzusammensetzung der Sporen abhängig ist.

Luftdichtheit

Die Luftdichtheit von Gebäuden hat großen Einfluss auf die Behaglichkeit und den Energieverbrauch von Gebäuden. Hygienisch notwendig ist mindestens ein Luftwechsel von 0,5 [LW/h]*, ab einem Luftwechsel von 3 [LW/h] bei geschlossenen Fenstern entstehen unangenehmer Luftzug und Wärmeverluste, die zu höherem Energieverbrauch führen. Gemessen werden die Gebäudedruckdifferenz und die dabei geförderte Luftmenge. Unter Einbeziehung des Luftvolumens der untersuchten Wohnung wird die Luftwechselrate pro Stunde [LW/h] bei einem Differenzdruck von 50 Pascal (n₅₀) errechnet. Die Bestimmung nach DIN V 4108-7 (Luftdichtigkeit von Bauteilen und Anschlüssen) erfolgt sowohl bei Unterdruck als auch bei Überdruck.

Endbewertung IBO ÖKOPASS

Wien XI, Simmeringer Hauptstraße 166 – 170, Bauteil 2 – 6

Schallschutz

Powertung			
Bewertung			I
ausgezeichnet	sehr gut	gut	befriedigend
-			
Luftschall D _{nT,w} in dB* -	Wohnungstrennwand		Bewertungsgewichtung:25%
D _{nT,w} ≥ 64 dB	D _{nT,w} ≥ 61 dB	$D_{nT,w} \ge 58 \text{ dB}$	$D_{nT,w} \ge 55 \text{ dB}$
	<u>63 dB</u>		(55 dB = Richtwert
			laut ÖN B 8115-2)
Luftschall D _{nT,w} in dB* -			Bewertungsgewichtung:25%
$D_{nT,w} \ge 64 \text{ dB}$	$D_{nT,w} \ge 61 \text{ dB}$	$D_{nT,w} \ge 58 \text{ dB}$	$D_{nT,w} \ge 55 \text{ dB}$
		durchschnittlich	(55 dB = Richtwert
		<u>59 dB)*</u>	laut ÖN B 8115-2)
Trittschall L _{nT,w} in dB			Bewertungsgewichtung:50%
,	1 44 JD	144-10	
$L_{nT,w} \leq 39 \text{ dB}$	$L_{nT,w} \leq 41 \text{ dB}$	$L_{nT,w} \leq 44 \text{ dB}$	L _{nT,w} ≤ 48 dB
	durchschnittlich		(48 dB = Richtwert
	40 dB)**		laut ÖN B 8115-2)
Grundgeräuschpegel b	ei geschlossenem Fenst	er bei Nacht L _{A, Gg –}	Bewertungsgewichtung:0%
L _{A, Gg − Nacht} ≤ 17 dB	L _{A, Gg − Nacht} ≤ 18 dB	L _{A, Gg − Nacht} ≤ 19 dB	L _{A, Gg − Nacht} ≤ 20 dB
			(20 dB = Richtwert
			laut ÖN B 8115-2 für
			Baulandkategorie 4)
Grundgeräuschpegel außen L _{A,Gg - Nacht} während der Nacht im Innenhof			

Genauigkeit: ± 1 dB

 $L_{A,Gg-Nacht} \leq 34~dB$

 $L_{\text{A,Gg-Nacht}} \leq 38 \text{ dB}$

(wird nicht bewertet, wenn kein Innenhof vorhanden ist)

 $L_{A,Gg-Nacht} \leq 36 \ dB$

Endbewertung IBO ÖKOPASS

 $\frac{\text{Bewertungsgewichtung:0\%}}{\text{L}_{A,Gg-Nacht} \leq 40 \text{ dB}}$

(40 dB = Richtwert laut ÖN B 8115-2 für Baulandkategorie 4)

^{)*} Es wurden 4 Messungen durchgeführt, der schlechteste Wert lag bei 57 dB, der beste bei 63 dB.

^{)**} Es wurden 5 Messungen durchgeführt, der schlechteste Wert lag bei 43 dB, der beste bei 38 dB.

^{)***} wurde nicht bewertet.

Luftschallschutz

Der Schutz vor Außenlärm und vor Geräuschen, wie z.B. Gespräche, Radio, Telefon, Fernseher etc. aus der Nachbarwohnung wird als Luftschallschutz bezeichnet, da die Lärmquelle Luft zu Schwingungen anregt. Der Luftschallschutz wird durch eine Differenzmessung der Schallpegel in den betreffenden Räumen bestimmt, also entweder zwischen Außenraum und zu schützenden Raum oder zwischen zwei Räumen benachbarter Wohnungen. Der Luftschallschutz wird als Standard-Schallpegeldifferenz D_{nT,w} angegeben - also je größer D_{nT,w} umso besser ist der Luftschallschutz.

Trittschallschutz

Der Schutz vor Geräuschen aus der Nachbarwohnung durch Gehen, Klopfen, Sesselrücken etc. wird als Trittschallschutz bezeichnet, da die Lärmquelle die Geschoßdecke oder andere Bauteile direkt zu Schwingungen anregt.

Der Trittschallschutz wird durch die Messung des Schallpegels in dem zu schützenden Raum bestimmt. Der Trittschallschutz wird als Standard-Trittschallpegel L'_{nT,w} angegeben. Je kleiner L'_{nT,w} - also je kleiner der Schallpegel im zu schützenden Raum ist - umso besser ist der Trittschallschutz.

Grundgeräuschpegel

Als Grundgeräuschpegel L_{A, Gg} wird der geringste, in einem Raum bei geschlossenen Fenstern während eines bestimmten Zeitraums gemessene Schallpegel bezeichnet.

Tageslicht und Besonnung

Bewertung			
ausgezeichnet	sehr gut	gut	befriedigend

Tageslichtfaktor (Verhältnis der Belichtung innen und außen) in			
Hauptwohnräumen Bewertungsgewichtung:60%			
Mindestens 85 % der	Mindestens 25% der		
Wohnungen haben	Wohnungen haben	Wohnungen haben	Wohnungen haben
<u>einen</u>	einen Tageslichtfaktor	einen Tageslichtfaktor	einen Tageslichtfaktor
<u>Tageslichtfaktor</u>	größer 2,0 %	größer 2,0 %	größer 2,0 %
größer 2,0 %			

Belichtung mit direktem Sonnenlicht				
(Sonnenstunden bei tiefstem Sonnenstand am 21.12.) Bewertungsgewichtung:40				
Mindestens 85 % der	Mindestens 55 % der	Mindestens 55 % der Mindestens 40 % der		
Wohnungen haben	Wohnungen haben	Wohnungen haben Wohnungen haben		
mindestens	<u>mindestens</u>	mindestens mindestens		
1,5 Sonnenstunden	1,5 Sonnenstunden	1,5 Sonnenstunden		
(direktes Sonnenlicht)	(direktes Son-	(direktes Sonnenlicht)	(direktes Sonnenlicht)	
im Hauptwohnraum	nenlicht) im im Hauptwohnraum		im Hauptwohnraum	
bei tiefstem Sonnenstand	Hauptwohnraum bei tiefstem Sonnenstand		bei tiefstem Sonnenstand	
am 21.12.	pei tiefstem Sonnenstand am 21.12.		am 21.12.	
	am 21.12.			

Tageslichtfaktor

Der Tageslichtfaktor wird im Hauptwohnraum in einer Raumtiefe von 2 m vom Fenster entfernt, 1 m Seitenabstand von der Wand und 0,85 m über dem Fußboden ermittelt. Je größer der Tageslichtfaktor ist, desto heller ist die Wohnung. Mit einem Tageslichtfaktor von 2,0 % wird eine gute Tageslichtversorgung im Hauptwohnraum erreicht.

Sehr helle Wohnungen haben ausreichend Fensterflächen und die Raumtiefen sind nicht sehr groß. Sie werden nicht von Balkonen (oder ähnlichem) über den Fenstern bzw. Nachbargebäuden beschattet. Der Abstand zu Nachbargebäuden muss auch ausreichend groß sein.

Belichtung mit direktem Sonnenlicht

Die Belichtung mit direktem Sonnenlicht beschreibt die direkte Sonneneinstrahlung bei tiefem Sonnenstand, wie sie am Tag der Wintersonnenwende (21.12. – kürzeste Tageslänge) gegeben ist.

Der Einfall direkten Sonnenlichtes hängt von der Verschattung durch Nachbargebäude oder Balkonen oder ähnlichem über den Fenstern und vom jahreszeitlichem Wechsel der Sonnenstandshöhe ab.

Eineinhalb Stunden direktes Sonnenlicht im Hauptwohnraum bei tiefstem Sonnenstand am 21.12. entsprechen einem Viertel der theoretisch möglichen Sonnenstunden an diesem Tag. Sie werden von südseitig ausgerichteten Räumen, die keine Nachbargebäude haben, gut erreicht.

Elektromagnetische Qualität

Bewertung					
ausgezeichnet	sehr gut	gut	befriedigend		
B (magnetische Flussdi	chte) in [T]* bei Tag		Bewertungsgewichtung:30%		
B < 100 nT	B < 500 nT	B < 1000 nT	B < 10000 nT		
<u>B = 20 nT</u>					
E (alaktrischa Faldstärk	e) in [V/m] für Wechselfe	older bei Tag	Powertungegowiehtung: 200/		
			Bewertungsgewichtung:20%		
E < 10 V/m	E < 20 V/m	E < 30 V/m	E < 50 V/m		
<u>E< 1 V/m</u>					
C /alabinantations a Cal-	-+"- \ :- [\//]* +" O -:	-64-1-1	D		
E (elektrostatische Feldstärke) in [V/m]* für Gleichfelder			Bewertungsgewichtung:20%		
E < 200 V/m	E < 400 V/m	E < 1000 V/m	E < 5000 V/m		
		<u>E = 500 V/m</u>			
Elektromagnetische Ho	chfrequenzfelder				
_	·	000 0500 MH-	Decrease and deleter at 000/		
	nW/m²]*, Frequenzbereich		Bewertungsgewichtung:30%		
S < 1 mW/m ²	S < 5 mW/m ²	S < 10 mW/m ²	S < 20 mW/m ²		
$S = 0.47 \text{ mW/m}^2$					
(Salzburger					
Vorsorgegrenzwert)					

Hochfrequenzfeldmessung: Übersichtsmessung

Elektrische und magnetische Feldstärke

Alle elektrischen Leitungen und Apparate sind von elektrischen und magnetischen Feldern umgeben. Elektrische Felder bestehen in der Umgebung von Leitungen, unabhängig davon, ob Strom fließt. Magnetische Felder entstehen durch die Bewegung elektrischer Ladungen, also durch elektrische Ströme. Wo Strom fließt, ist neben dem elektrischen auch ein magnetisches Feld vorhanden.

Die elektrische und magnetische Feldstärke künstlich erzeugter Felder soll so gering wie möglich sein. Die hier angegebenen Werte sind als Vorsorgewerte zu verstehen und liegen bis zu einem Faktor 20 unter den gesetzlichen Richtwerten.

Elektromagnetische Hochfrequenzfelder

Hochfrequente elektromagnetische Felder werden durch Fernseh- und Radiosender, Funk- und Radareinrichtungen und in jüngster Zeit zunehmend durch Basisstationen von Mobilfunkbetreibern verursacht. Im privaten Wohnraum und am Arbeitsplatz stellen Mobiltelefone und Telefonanlagen mit Mobilteilen Quellen für hochfrequente elektromagnetische Felder dar.

Die hier angegebenen Werte sind als Vorsorgewerte zu verstehen und liegen bis zu einem Faktor 1000 unter den gesetzlichen Richtwerten. Der dieser Bewertung zugrundeliegende sogenannte Salzburger Vorsorgewert ist auch bei Kritikern als vernünftiger Kompromiss anerkannt.

ÖKOLOGISCHE QUALITÄT

Ökologische Qualität der Baustoffe und Konstruktionen

Bewertung			
ausgezeichnet	sehr gut	gut	befriedigend

Baustoff- und Konstruktionswahl (erweiterter Rohbau: thermische Gebäudehülle mit Fenstern und Türen und Zwischendecken)

IIII Felistelli ullu	i uren una zwischende	CKEII)	
Ökoindex OI3 der th	nermischen Gebäudehül	le	Bewertungsgewichtung:40%
(mit Fenstern, Türer	n und Zwischendecken)		
Ol3 _{TGH-lc} ≤ 15	Ol3 _{TGH-lc} ≤ 35	Ol3 _{TGH-lc} ≤ 55	OI3 _{TGH-lc} > 55
		Bauteil 2,3,6:	
		$Ol3_{TGH-Ic} = 38,6$	
		Bauteil 5:	
		$Ol3_{TGH-Ic} = 38,7$	

Baustoffwahl der thermischen Gebäudehülle			Bewertungsgewichtung:30%
(mit Fenstern, Türen und Zwischendecken) nach Prioritätenliste IBO*			
mindestens 30 % mit	mindestens 15 % mit	mindestens 5 % mit	weniger als 5 % mit
Positivbewertung	Positivbewertung	Positivbewertung	Positivbewertung
und	<u>und</u>	<u>und</u>	oder
höchstens 5 % mit	höchstens 5 % mit	höchstens 10 % mit	mehr als 10 % mit
Negativbewertung	Negativbewertung	Negativbewertung	Negativbewertung
			1,1% negativ
			6,2% positiv

Baustoff- und Konstruktionswahl (Innenausstattung)

Dadoton and Konotraktionovani (innonacostattarig)			
Baustoffwahl			Bewertungsgewichtung:30%
Mindestens 22	mindestens 15	mindestens 10	weniger als 10
Positivpunkte	Positivpunkte	Positivpunkte	Positivpunkte
und	<u>und</u>	<u>und</u>	oder
höchstens 1	höchstens 5	höchstens 7	größer gleich 8
Negativpunkt	Negativpunkte	Negativpunkte	Negativpunkte
		14 Positivpunkte	
		1 Negativpunkt	

Baustoff- und Konstruktionswahl des erweiterten Rohbaus (Thermische Gebäudehülle mit Fenstern und Türen und Zwischendecken)

Mittels der IBO-Baustoff-Datenbank und dem Programm ECOSOFT (Software zur Berechnung der Ökokennzahlen eines Gebäudes) werden die ökologischen Kennwerte der verwendeten Baustoffe und Konstruktionen ermittelt und der Ökoindex OI3 des erweiterten Rohbaus (Thermische Gebäudehülle und Zwischendecken) berechnet. Je besser die Einstufung ist, desto ressourcenschonender erfolgte die Herstellung des Gebäudes, die Umwelt wurde durch eine optimierte Baustoffwahl geschont.

Die Baustoffwahl wird mittels Prioritätenliste beurteilt: Ökologisch besonders sinnvolle Baustoffe, z.B. solche aus nachwachsenden Rohstoffen oder mit einer langen Lebensdauer bei geringem Wartungsbedarf, werden positiv bewertet, Baustoffe, deren Herstellung oder Verwendung die Umwelt beeinträchtigen, wie z.B. PU-Schäume oder PVC, werden negativ bewertet. Die Bewertung wird mit den eingesetzten Flächen gewichtet.

Baustoff- und Konstruktionswahl (Innenausstattung)

Die verwendeten Materialien wie etwa Bodenbeläge oder Wandbeschichtungen werden aus ökologischer Sicht beurteilt und nach der Prioritätenliste IBO positiv oder negativ bewertet.

Gesamtenergiekonzept

Bewertung			
ausgezeichnet	sehr gut	gut	<u>befriedigend</u>
ab 14 Punkte	11-13 Punkte	8-10 Punkte	0-7 Punkte
			7 Punkte

Energiekennzahl (HWB_{BGF3400}) nach dem Berechnungsverfahren der MA25

HWB _{BGF3400} Niedrigenergiehaus: 2 Punkte	2 Punkte
HWB _{BGF3400} Niedrigenergiehaus minus 6%: 3 Punkte	
HWB _{BGF3400} Niedrigenergiehaus minus 12%: 4 Punkte	
HWB _{BGF3400} Niedrigenergiehaus minus 18%: 5 Punkte	
HWB _{BGF3400} Niedrigenergiehaus minus 24%: 6 Punkte	
HWB _{BGF3400} Niedrigenergiehaus minus 30%: 7 Punkte	
Passivhaus nach den Kriterien des Passivhaus Instituts Darmstadt	14 Punkte

Energieträger

Energieträger Biomasse für die gesamte Wohnhausanlage	6 Punkte
Energieträger Fernwärme für die gesamte Wohnhausanlage	4 Punkte
Energieträger Erdgas	0 Punkte
Energieträger Erdöl	0 Punkte
Solarheizung je 15 % Deckungsgrad Warmwasserverbrauch 1 Punkt	4 Punkte

Andere Maßnahmen

Wasserspararmaturen (Durchflussbegrenzer)	1 Punkt
Stromsparende Maßnahmen, zumindest Energiesparlampen für die	1 Punkt
Dauerbeleuchtung	

Gesamtenergiekonzept

Das Gesamtenergiekonzept berücksichtigt:

- Die Energiekennzahl (HWB_{BGF3400}) nach dem Berechnungsverfahren der MA25 dient zur Information über den energetischen Standard eines Gebäudes. Der Berechnung der Energiekennzahl liegen durchschnittliche Klimadaten, standardisierte interne Wärmegewinne sowie ein standardisiertes Nutzerverhalten zugrunde. Die errechnete Energiekennzahl kann daher von den tatsächlichen Verbrauchswerten der Nutzer abweichen. Im Geschoßwohnbau ergeben sich je nach Lage der Wohnung im Gebäude unterschiedliche Energiekennzahlen.
- Die Art der Energieträger: Fernwärme und Erneuerbare Energieträger wie Biomasse oder Sonnenenergie verbessern das ökologische Profil und erhöhen daher die Punktezahl.
- Wassersparmaßnahmen durch Einsatz von Armaturen mit begrenztem maximalem Wasserdurchfluss, die so den Energieverbrauch für die Warmwasserbereitstellung verringern.
- Stromsparende Maßnahmen, z.B. für die Allgemeinbeleuchtungen

Wassernutzung

Bewertung			
ausgezeichnet	sehr gut	gut	befriedigend
ab 10 Punkte	7-9 Punkte	4-6 Punkte	0-3 Punkte
	7 Punkte		

Das WC ist mit einer Wasserspar- oder Stopptaste ausgerüstet.	1 Punkt
Die Armaturen sind mit Durchflussbegrenzern ausgestattet.	1 Punkt
Maximaler Durchfluss: 9 l/min bei 3 bar	
Die Duschköpfe sind mit Durchflussbegrenzern ausgestattet.	1 Punkt
Maximaler Durchfluss: 12 l/min bei 3 bar	
Ein eigener Kaltwasserzähler für jede Wohneinheit	1 Punkt
Regen- oder Grundwassernutzung für die Bewässerung der	1 Punkt
Grünanlagen	
Regen- oder Grundwassernutzung für die WC-Spülung	2 Punkte

Versiegelungsgrad > 50 %	0 Punkte
Versiegelungsgrad < 50 %	1 Punkt
Versiegelungsgrad < 25 %	3 Punkte
Begrünte Dachflächen > 60 %	1 Punkt

Versiegelungsgrad in % = Sonstige versiegelte Fläche/ (Grundstücksfläche – Bruttogrundrissfläche des Erdg.) x 100

Versiegelungsgrad

Der Versiegelungsgrad bezeichnet das Ausmaß der mit wasserundurchlässigen Schichten wie Asphalt, Beton versehenen Grundstücksfläche. Berücksichtigt wird dabei die unverbaute Fläche. Je geringer der Versiegelungsgrad ist, desto besser kann Regenwasser versickern, damit werden das Kanalsystem entlastet und das Bodenleben sowie der Wasserhaushalt verbessert.

Glossar:

INDI	Dozibalı Fishait das Cahallaggala
[dB]	Dezibel: Einheit des Schallpegels
[LW/h]	Luftwechsel pro Stunde
Fanger	P.O. Fanger: renommierter dänischer Wissenschafter im Bereich Innenraum-
LUAZD	luft und Thermischer Komfort
HWB	Heizwärmebedarf HWB [kWh/a] bezeichnet die Menge an Wärme, die einem
	Gebäude/einem Raumverband pro Jahr zugeführt werden muss, um
11/0=1	normgerechte Raumtemperaturen aufrechtzuerhalten.
[KBE]	koloniebildende Einheiten (Pilzsporen, Bakterien etc.) pro Kubikmeter Luft
MAK	Maximale Arbeitsplatz-Konzentration von gesundheitsschädlichen Gasen,
	Dämpfen und Stäuben am Arbeitsplatz
NEH-Standard	Niedrigenergiehaus- Standard bezeichnet Gebäude, deren Heizwärmebedarf
	(bei einer Größe von mehr als 8000 Kubikmeter, d.s. ca. 40 Wohnungen á 80
	m² Nutzfläche) 35 kWh/m²a nicht übersteigt. Das entspricht in etwa einem
	Verbrauch von 3 l Heizöl pro Quadratmeter und Jahr für Heizzwecke.
OIB	Österreichisches Institut für Bautechnik
Passivhaus	Passivhäuser sind Gebäude, deren Heizwärmebedarf HWB 15 kWh/m²a nicht
	übersteigt.
PHPP	Passivhausprojektierungspaket, ist ein Nachweisverfahren für den
	Passivhaus-Standard auf der Basis von Energiekennwerten. Es wurde vom
	Passivhausinstitut Darmstadt erstellt.
ppm	parts per million: Teile pro Million; Konzentrationsangabe: gibt an, wie viele
	Gewichts- oder Volumseinheiten in einer Substanz in einer Million Gewichts-
	oder Volumseinheit einer anderen Substanz enthalten sind.
Prioritätenliste IBO	Baustoffliste zur ökologischeren Auswahl: modifiziert aus "Check it!" -
	Kriterienkatalog zur Berücksichtigung des Umweltschutzes im Beschaffungs-
	und Auftragswesen"
	Herausgegeben von: BM für Land- und Forstwirtschaft, Umwelt und
	Wasserwirtschaft, BM für Bildung, Wissenschaft und Kultur, BM für Verkehr,
	Innovation und Technologie, BM für Wirtschaft und Arbeit, Land Steiermark,
	MA Wien, Land Niederösterreich, Land Salzburg, Land Burgenland.
	Erstellt vom IBO 2001
Referenzgebäude	Vergleichsgebäude in herkömmlicher Bauweise ohne ökologische
3	Baumaßnahmen
[T]	Tesla: Einheit der magnetischen Feldstärke (nT = Nanotesla = 10 ⁻⁹ Tesla)
TVOC	Total volatile organic compounds: Summe der flüchtigen Kohlenwasserstoffe
U-Wert	Wärmedurchgangskoeffizient: Der U-Wert (früher: k-Wert) gibt an, welche
	Wärmemenge durch einen Quadratmeter eines Bauteils pro Sekunde bei einer
	Temperaturdifferenz von einem Kelvin hindurchgeht [W/m²K]. Je kleiner der
	U-Wert ist, desto besser ist der Wärmeschutz.
[V/m]	Volt pro Meter: Einheit der elektrischen Feldstärke
VDI 6030	Eine Richtlinie des Vereins Deutscher Ingenieure zur Auslegung von Raum-
	heizkörpern. Neben der Deckung der Heizlast sollen Behaglichkeitsdefizite
	gemindert oder beseitigt werden.